

$$(2x-1) + (3y+7)\frac{dy}{dx} = 0$$
M N

We have

$$\frac{\partial M}{\partial x} = 2$$
, $\frac{\partial M}{\partial y} = 0$ continuous
 $\frac{\partial N}{\partial x} = 0$, $\frac{\partial N}{\partial y} = 3$ everywhere
 $\frac{\partial N}{\partial x} = 0$, $\frac{\partial N}{\partial y} = 3$

And
$$\frac{\partial M}{\partial y} = 0 = \frac{\partial N}{\partial x}$$
.
Thus the equation is exact.
Thus the equation is exact.
We need to find $f(x,y)$ where
 $\frac{\partial f}{\partial x} = M(x,y)$ and $\frac{\partial f}{\partial y} = N(x,y)$.
That is we want to solve
 $\frac{\partial f}{\partial x} = 2x - 1$
 $\frac{\partial f}{\partial x} = 3y + 7$ (1)
 $\frac{\partial f}{\partial y} = 3y + 7$ (2)

Integrate () with respect to x to get $f(x,y) = x^2 - x + C(y)$ (3) constant espect with respect Integrate (2) with respect to y to yet $f(x,y) = \frac{3}{2}y^2 + \frac{7}{2}y + D(x), \quad (x) = \frac{3}{2}y^2 + \frac{7}{2}y + \frac{1}{2}y + \frac{1}$ set 3 equal to 9 to get $x^{2}-x+C(y)=f(x,y)=\frac{3}{2}y^{2}+7y+D(x)$ Set $D(x) = x^2 - x$ and $C(y) = \frac{3}{2}y^2 + 7y$. Plug either into 3 or 4 to get f. Plug into 3 to get $f(x,y) = x^{2} - x + ((y)) = x^{2} - x + \frac{3}{2}y^{2} + \frac{7}{2}y^{2}$ So a solution to the ODE is given implicitly by the equation $x^{2} - x + \frac{3y^{2}}{2} + 7y = c$ where c is a constant.

()(b)

$$5x+4y+(4x-8y^{3})y'=0$$

M N

Let

$$M(x,y) = 5x + 4y$$
 Continuous
 $M(x,y) = 4x - 8y^{3}$ Continuous
 $N(x,y) = 4x - 8y^{3}$

Then,

$$\frac{\partial M}{\partial x} = 5$$
, $\frac{\partial M}{\partial y} = 4$
 $\frac{\partial N}{\partial x} = 4$, $\frac{\partial N}{\partial y} = -24y^2$
 $\frac{\partial N}{\partial x} = 4$, $\frac{\partial N}{\partial y} = -24y^2$

We have that

$$\frac{\partial M}{\partial y} = 4 = \frac{\partial N}{\partial x}$$
So, the ODE is exact.
We want to find $f(x,y)$ where

$$\frac{\partial f}{\partial x} = M(x,y)$$

$$\frac{\partial f}{\partial y} = N(x,y)$$

So we need to solve

$$\frac{\partial f}{\partial x} = 5x + 4y$$

$$\frac{\partial f}{\partial x} = 4x - 8y^{3}$$

$$\frac{\partial f}{\partial y} = 4x - 8y^{3}$$
Integrate (D) with respect to x to get:
f(x,y) = $\frac{5}{2}x^{2} + 4yx + C(y)$

$$\frac{3}{2}$$
Unit horizont
f(x,y) = $4xy - 2y^{4} + D(x)$

$$\frac{4}{2}x^{2} + 4yx + C(y) = 4xy - 2y^{4} + D(x)$$

Solution $S = 2y^4 + D(x)$ $S = 2y^4 + D(x)$ Set $C(y) = -2y^4$ and $D(x) = \frac{5}{2}x^2$ You can plug either into 3 or 9 to find f.

If you plug
$$C(y)$$
 into (3) you get:
 $f(x,y) = \frac{5}{2}x^2 + 4yx + C(y)$
 $= \frac{5}{2}x^2 + 4yx - 2y^4$
So an implicit solution to the
ODE is given by the equation
 $\frac{5}{2}x^2 + 4yx - 2y^4 = C$
Where c is any constant.

$$(i)(c) - (x + 6y)y' + (2x + y) = 0$$

$$N$$

$$M$$

Let

$$M(x,y) = 2x+y$$
 } Continuous
 $N(x,y) = -x-6y$ } everywhere

Then,

$$\frac{\partial M}{\partial x} = Z$$
, $\frac{\partial M}{\partial y} = 1$ continuous
 $\frac{\partial N}{\partial x} = -1$, $\frac{\partial N}{\partial y} = -6$ everywhere

We have that

$$\frac{\partial M}{\partial y} = 1$$
 not
 $\frac{\partial N}{\partial x} = -1$ equal
 $\frac{\partial N}{\partial x} = -1$ equal
Thus, the equation is not exact.

$$\frac{Z_{X}}{Y} - \frac{\chi^{2}}{y^{2}} \cdot \frac{dy}{dx} = 0$$

$$M \quad N$$
Let $M(x,y) = \frac{Z_{X}}{y} = 2xy^{-1}$ (ontinvous except
$$N(x,y) = -\frac{\chi^{2}}{y^{2}} = -\chi^{2}y^{-2}$$
) when $y = 0$

Then

$$\frac{\partial M}{\partial x} = 2y^{-1}, \quad \frac{\partial M}{\partial y} = -2xy^{-2} \quad (\text{ontinuous})$$

$$\frac{\partial N}{\partial x} = -2xy^{-2}, \quad \frac{\partial N}{\partial y} = 2x^{2}y^{-3} \quad \text{when } y = 0$$

Note that

$$\frac{\partial M}{\partial y} = -2xy^{-2} = \frac{\partial N}{\partial x}$$
 $\int_{y \neq 0}^{y \neq 0} equal$

This implies
$$C(y)$$
 and $D(x)$ are both
constants. You can make them
both zero.
So, set $C(y) = 0$ and $D(x) = 0$.
Plug $C(y)$ into (a) to get
 $f(x,y) = x^2y' + C(y) = x^2y'$
So, a solution to the ODE
is given by
 $x^2y' = c$ or $y' = c$
where c is any constant.

()[e]

$$(2y^2x-3) + (2yx^2+4)y' = 0$$

M N

Let

$$M(x,y) = 2y^{2}x - 3 \qquad (un tinuus)$$

$$M(x,y) = 2yx^{2} + 4 \qquad (un tinuus)$$

$$N(x,y) = 2yx^{2} + 4 \qquad (un tinuus)$$

Then

$$\frac{\partial M}{\partial x} = 2y^2 \quad \frac{\partial M}{\partial y} = 4y \times \begin{cases} \text{continuous} \\ \text{everywhere} \\ \frac{\partial N}{\partial x} = 4y \times \quad \frac{\partial N}{\partial y} = 2x^2 \end{cases}$$

And,

$$\frac{\partial M}{\partial y} = 4yx = \frac{\partial N}{\partial x}$$
So, the ODE is exact.
We must find f where

$$\frac{\partial f}{\partial x} = 2y^{2}x - 3 \qquad (1) \qquad \qquad \frac{\partial f}{\partial x} = M$$

$$\frac{\partial f}{\partial y} = 2yx^{2} + 4 \qquad (2) \qquad \qquad \frac{\partial f}{\partial y} = N$$

Integrate () with respect to x to get $f(x,y) = y^{2}x^{2} - 3x + C(y)$ $(3) \quad \text{constant} \\ \text{with} \\ \text{respect} \\ \text{to } x \\ y \quad \text{to } y \text{ ct:}$ $f(x,y) = y^{2}x^{2} + 4y + D(x), (9) \qquad \text{constant} \\ \text{with} \\ \text{respect} \\ \text{to } y \\ \text{Set (3) equal to (9) to get:} \\ to y \\ \text{to } y \\ \text{$ $y'_{X} - 3x + C(y) = y'_{X} + 4y + D(x).$ -3x + C(y) = 4y + D(x)Thus, Set C(y) = 4y and D(x) = -3x. Plug either into 3 or (4) to find f. Plugging C(y) into 3 we get $f(x,y) = y^{2}x^{2} - 3x + c(y)$ $= y^{2}x^{2} - 3x + 4y$

So an implicit solution to the ODE is given by
$$y^2x^2 - 3x + 4y = c$$
 where c is any constant.

()(f) Consider $\left(2y - \frac{1}{x} + \cos(3x)\right)\frac{dy}{dx} + \frac{y}{x^2} - \frac{y^3}{x^3} + \frac{3y\sin(3x)}{y} = 0$

 $M(x,y) = yx^{-2} - 4x^{3} + 3y \sin(3x)$ except $W(x,y) = 2y - x^{-1} + \cos(3x)$ whenLet

Then,

$$\frac{\partial M}{\partial x} = -2yx^{-3} - 12x^{2} + 9y(\cos(3x))$$

$$\frac{\partial M}{\partial x} = -2yx^{-3} - 12x^{2} + 9y(\cos(3x))$$

$$\frac{\partial M}{\partial x} = x^{-2} + 3\sin(3x)$$

$$\frac{\partial M}{\partial x} = x^{-2} - 3\sin(3x)$$

$$\frac{\partial M}{\partial x} = x^{-2} - 3\sin(3x)$$

$$\frac{\partial M}{\partial y} = 2$$

Note that $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial y}$ except at discrete points when $\sin(3x) = 0$. Thus the equation is <u>not</u> exact.

2)(a) From problem (1) above we saw
that a solution to

$$(2x-1)+(3y+7)\frac{dy}{dx}=0$$

is given by the equation
 $x^2-x+\frac{3y^2}{2}+7y=c$
We want the solution to satisfy $y(1)=2$.
We want the solution to satisfy $y(1)=2$.

to get
$$1^{2} - 1 + \frac{3(2)^{2}}{2} + 7(2) = c$$

(

So,

$$zo = c$$

Thus, a solution to the initial value
problem is given by
 $\chi^2 - \chi + \frac{3}{2}y^2 + 7y = 20$.

(2)(b) We are given that the equation

$$(e^{x}+y) + (2+x+ye^{y})y'=0$$
is exact.
(hick:

$$\frac{\partial M}{\partial y} = 1 \quad equal$$

$$\frac{\partial M}{\partial x} = 1 \quad equal$$

$$\frac{\partial F}{\partial x} = e^{x}+y$$
(i)
$$\frac{\partial F}{\partial x} = e^{x}+y$$
(j)
$$\frac{\partial F}{\partial y} = 2+x+ye^{y}$$
(j)
$$\frac{\partial F}{\partial y} = N$$

$$\frac{\partial F}{\partial y} = 2+x+ye^{y}$$
(j)
$$\frac{\partial F}{\partial y} = N$$
Integrate (D) with respect to x to get
Integrate (D) with respect to x to get
Integrate (Q) with respect to y to y

$$\frac{\partial F}{\partial y} = 2y + xy + \int ye^{y} dy + D(x)$$
(anstant
(anstant
(constant
(constant))
(constant
(constant
(constant))
(constant
(constant)
(consta

We need
$$\int ye^{y} dy$$
. We get
 $\int ye^{y} dy = ye^{y} - \int e^{y} dy = ye^{y} - e^{y}$
 $u = y$ $du = dy$
 $dv = e^{y} dy = e^{y}$
 $\int u dv = uv - \int v du$

Thus, f(x,y) = 2y + xy + ye' - e' + D(x) (F set (3) equal to (9) to get $e^{x} + yx + C(y) = xy + 2y + ye' - e' + D(x)$

Thus,

$$f(x,y) = e^{x} + y \times + C(y)$$

 $= e^{x} + y \times + 2y + y e^{y} - e^{y}$
So, an implicit solution to the ODE
is given by the equation
 $e^{x} + y \times + 2y + y e^{y} - e^{y} = c$
where c is any constant.
We want the solution when $y(o) = 1$.
We want the solution when $y(o) = 1$.
Plug in $x = 0$, $y = 1$ into the above
to get
 $e^{x} + 1 \cdot 0 + 2 \cdot 1 + 1 \cdot e^{1} - e^{1} = c$

(z) (c) We are given that the equation

$$\left(\frac{3y^2 - x^2}{y^5}\right) \frac{dy}{dx} + \frac{x}{2y^4} = 0$$

N
M

Check:

$$M = \frac{1}{2}xy^{7} + \frac{\partial M}{\partial y} = -Zxy^{5} \in equal$$

 $N = 3y^{-3} - x^{2}y^{-5} + \frac{\partial N}{\partial x} = -Zxy^{5} \in equal$

Integrate () with respect to x to get: $f(x,y) = \frac{1}{4} \times^2 y^4 + C(y)$ (3) $f(x,y) = \frac{1}{4} \times^2 y^4 + C(y)$ (3) $f(x,y) = \frac{1}{2} y^2 + \frac{1}{4} \times^2 y^4 + D(x)$ (4) $f(x,y) = -\frac{3}{2} y^2 + \frac{1}{4} \times^2 y^4 + D(x)$ (4) $f(x,y) = -\frac{3}{2} y^2 + \frac{1}{4} \times^2 y^4 + D(x)$ (5)

Set (3) equal to (1) to get

$$\frac{1}{4} \times \frac{2}{9} + C(y) = -\frac{3}{2} \cdot \frac{1}{9} \cdot \frac{1}{4} \cdot \frac{2}{9} \cdot \frac{1}{7} + D(x)$$
So,

$$C(y) = -\frac{3}{2} \cdot \frac{1}{9} \cdot \frac{1}{7} + D(x)$$
Set $C(y) = -\frac{3}{2} \cdot \frac{1}{9} \cdot \frac{1}{9} \cdot \frac{1}{9}$
and $D(x) = 0$.
Set $C(y) = -\frac{3}{2} \cdot \frac{1}{9} \cdot \frac{1}{9} \cdot \frac{1}{9}$
and $D(x) = 0$.
You can plug either into (3) or (4) to get f.
Plug $C(y) = -\frac{3}{2} \cdot \frac{1}{9} \cdot \frac{1}{10} \cdot \frac{1}{10}$
To get

$$F(x,y) = \frac{1}{4} \times^{2} y^{-4} + C(y)$$

$$= \frac{1}{4} \times^{2} y^{-4} - \frac{3}{2} y^{-2}$$

So a solution to the ODE is given by

$$\frac{1}{4} \times^{2} y^{-4} - \frac{3}{2} y^{-2} = C$$

where c is any constant.
We want the solution when $y(y) = 0$.

So, plug
$$X = 1, y = 1$$
 into the
above equation to get
$$\frac{1}{4}(1)^{2}(1)^{1} - \frac{3}{2}(1)^{2} = C$$

Thus,

$$C = \frac{1}{4} - \frac{3}{2} = -\frac{5}{4}$$
So a solution to the initial value
problem is given by

$$\frac{1}{4} x^{2} y^{-4} - \frac{3}{2} y^{-2} = -\frac{5}{4}$$
Dr

$$\frac{x^{2}}{4y^{4}} - \frac{3}{2y^{2}} = -\frac{5}{4}$$